Empirical Analysis of the Sources of Corn Used for Ethanol Production in the United States: 2001-2009

‘Debo Oladosu
&
Keith Kline
Center for Bioenergy Sustainability
Renewable Energy Systems Group
Environmental Sciences Division

Presentation at the NCGA AgEnergy Symposium
November 4, 2010

*This research was supported by the U.S. Department of Energy (DOE) under the Office of the Biomass Program and performed at Oak Ridge National Laboratory (ORNL). Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The views in this presentation are those of the authors, who are also responsible for any errors or omissions.
Outline

ницы Introduction

ницы Review of the Empirical Data

ницы Methodology & Results

ницы Conclusions
Indirect Land Use Change (ILUC) Unobservable; Estimation Involves Many Assumptions

- ILUC is unobservable and depends on a multitude of factors
- Modeling the complex interactions of these factors involves many assumptions
- Rapid growth in ethanol production over the last decade
- Provides empirical data to begin evaluating these assumptions
Review of the Empirical Corn Data: Harvested Area Changed Little from 2001-2009

- Harvested cropland changed little since 1990
- Corn share of major crops area around 30%
- Oilseeds share about 37%
Review of the Empirical Corn Data: Exports Up By 50% from 2002 to 2007; Use for Ethanol Quintupled

- Export share stable from 2001-2007
- Ethanol use share - 2001-2009: +26%
- Other uses share - 2001-2009: -23%
Index Decomposition Analysis (IDA): Isolates the Contributions of Individual Factors

- Used extensively for energy decomposition analysis (see references)
- Allocates the change in a given variable (y) to each contributing factor *ceteris paribus* - if all other factors were held constant
- Decomposition analysis is based on the total differential of a general function of the following form:

\[y = x_1 \cdot x_2 \cdot \ldots \cdot x_n \]

- The log. mean divisia index (LMDI I) formulation:

\[\Delta y^D = \sum_{i=1}^{n} \left(\frac{y_{t1} - y_{t0}}{ln \left(\frac{y_{t1}}{y_{t0}} \right)} \right) ln \left(\frac{x_{i,t1}}{x_{i,t0}} \right) = \sum_{i=1}^{n} \Delta y \frac{g_{xi}}{g_y} \]

- Addresses need to isolate the role of individual factors
Decomposition Analysis: Corn Use for Ethanol Relationship with Demand/Supply Factors

Corn Supply and Distribution

- Corn Production
- Beginning Stocks
- Total Corn Supply

Corn Imports
- Domestic Corn Uses
- Ending Stocks

- Food, Fuel, Seed and Industrial Uses
- Feed and Residual Uses

- Corn Use for Ethanol Production
- Other Food, Seed and Industrial Use

Corn Land Use

- All Harvested Cropland
 - Harvested Other Crops Land
 - Harvested Grain & Oil Seeds Land
 - Harvested All Grains Land
 - Harvested Corn Area
 - Corn Yield

- Corn Production

➢ Index Decomposition Analysis traces the pathway highlighted by red arrows
Decomposition Analysis: Multiplicative Relationship Describes the Role of Factors in Corn Use for Ethanol

\[Q_{ce} = \left(\frac{Q_{ce}}{Q_{ffsi}} \right) \left(\frac{Q_{ffsi}}{Q_{dom}} \right) \left(\frac{Q_{dom}}{Q_{sup}} \right) \left(\frac{Q_{sup}}{Q_{prd}} \right) Q_{prd} \]

\[= \left(\frac{Y_{corn}}{A_{corn}} \right) \left(\frac{A_{corn}}{A_{cgrn}} \right) \left(\frac{A_{cgrn}}{A_{grn}} \right) \left(\frac{A_{grn}}{A_{grn+oilsd}} \right) \left(\frac{A_{grn+oilsd}}{A_{all}} \right) \]

Inter-Crop Land Transfers

\[Q_{ce} = \text{Corn use for ethanol production (million tons)} \]
\[Q_{ffsi} = \text{Corn use for food, fuel, seed and industrial purposes (million tons)} \]
\[Q_{dom} = \text{Total domestic corn use (million tons)} \]
\[Q_{prd} = \text{Total corn production (million tons)} \]
\[Q_{sup} = \text{Total corn supply (million tons)} \]

\[Y_{corn} = \text{Annual corn yield in (tons/ha)} \]
\[A_{corn} = \text{Annual corn harvested area (mha)} \]
\[A_{cgrn} = \text{Annual coarse grain harvested area (mha)} \]
\[A_{grn} = \text{Annual all grain* harvested area (mha)} \]
\[A_{grn+oilsd} = \text{Annual all grain plus oilseeds** harvested area (mha)} \]
\[A_{all} = \text{Annual total harvested cropland area (mha)} \]

* Grains include corn, barley, oats, rye, sorghum (coarse grains), wheat, milled rice (other grains)
** Oilseeds include soybean, cottonseed, peanut, rapeseed, and sunflower seed
Decomposition Results 2001-2008*: Domestic Use Reallocations and Production Accounted for Most of the Change in Corn Use for Ethanol

- Net Contribution from domestic use reallocation - 2001-2008: 85%
- Net Contribution from domestic share of supply - 2001-2008: 5%
- Net contribution from supply/production ratio - 2001-2008: -2%
- Net Contribution from production - 2001-2008: 12%

* The decomposition analysis did not include 2009 because data on total harvested cropland area was not available.
Decomposition Results 2001-2008: Yield Provided About Half of Total Production Contribution

- Net contribution from yield from 2001-2008: ~6%
- 50% of production contribution
- Net Contribution from Land Expansion: 3%
- Net Contribution from Inter-Crop Land Transfers: 2%
Decomposition Results 2001-2008: Factor Contributions Vary from Year to Year

- All years
 - Contribution from domestic use re-allocations were significant in all years

- 2003, 2004 & 2007: All years of healthy economic growth
 - Production contributions large in all years
 - Contribution from domestic share of supply decreased
 - Demand increases met by production rather than diversion of exports

- 2001, 2002 & 2008: All years of market decline
 - Production contributions declined in all years
 - Contribution from domestic share of supply increased
 - Export demand reductions

 - Production contributions declined in both years
 - Contributions from domestic share of supply decreased in 2005, but increased in 2006
Conclusions: Key Assumptions Associated with ILUC Played A Small Role in the 2001-2008 Data Based on Decomposition Results

- Net increase in corn use for ethanol from 2001-2008 mainly from:
 - Re-allocation of domestic corn use in favor of ethanol
 - Increased production (half due to yield change)

- Contributions from factors behind ILUC not large in 2001-2008 data
 - Contribution from the domestic use share of supply small
 - Export share changes were small
 - Contributions from land factors were also small

- Domestic market’s response to corn use for ethanol very flexible

- Year to year variations in factor contributions
 - Cannot use single year observation or two-point comparisons to predict long-term ILUC
 - Crucial dynamics in the determinants of ILUC require further examination
Additional Slides
Economic Conditions Has Crucial Influence on the Domestic and Export Crop Markets

- **2001 & 2002**: economy in recovery
 - Corn production declines; corn ethanol begins to increase
- **2003, 2004**: economic growth
 - Corn production increases; corn ethanol increases rapidly
- **2005, 2007**: economic growth
 - Corn production declined in 2005, increased in 2007; corn ethanol keeps increasing
- **2006**: economic slowdown
 - Corn production declines; corn ethanol keeps increasing
- **2008**: economic decline
 - Corn production declines; corn ethanol keeps increasing
Corn ethanol returns between 30-40% of corn use as DDGS
Exports of DDGS estimated at 6 million tons of corn by 2008
In addition to the increase in corn exports during the period
Studies suggest higher efficiency of DDGS relative to corn/soybean (Bremer et al, 2010)

Domestic use declined slightly from 2002-2007

Exports increased in 2003 & 2007
- Oilseeds production increased in 2003 and was flat through 2006; corn production increased in 2003, 2004 & 2007
- Domestic use rose slightly from 2003-2006; declined in 2007 & 2008
- Exports increased from 2003 – 2007, with a slight dip in 2005
References