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CCSI Multi-Disciplinary Research Series

(Source for list of Prior Talks: Sujith Surendran Nair)

* Budhu Bhaduri — Multi-disciplinary components of geospatial analysis

* Ben Preston — Why and how climate adaptation research is multi-
disciplinary

* Virginia Dale — ORNL's impressive history in multi-disciplinary research
e Steve Fernandez — Energy infrastructure vulnerability

 Tom Wilbanks — Personal experiences/ journey in sustainability research
* Tony King — Thought-provoking ideas around multi-disciplinary research
 Dan Hayes — The new NSF arctic project

* Forrest Hoffman — Forest monitoring and disturbance, FOREWARN

e Jay Gulledge — Transforming science to policy

* GaryJacobs — Knowledge Systems for Sustainability (KSS)

* Martin Keller — Framing ESD and CCSI future research

* Peter Thornton — Earth System Modeling and personal path to ORNL

* Q@Giri Palanisamy — Data management

* Today: Keith L. Kline — Bioenergy, Land Use, Food Security and Climate
Calculator



Why bioenergy, LUC and Food? _

Do the right thing: conserve resources
for future generations

— “Living within our means”

— Important “wedge” to reduce fossil
fuel dependence

e |EA, IPCC, WWE... all assume important role for bioenergy
e 80-250 EJ (2050) to help meet emission targets
Sustainable development
— Involving stakeholders in process
— Integrated land-use planning
— More sustainable rural livelihoods
— Landscapes managed for CC mitigation, adaptation, resilience

Improve land management, efficiency (disturbances including fire
and pests destroy over 500 million Ha biomass each year)

Address issues surrounding global “LUC” (land-use change)




Global biomass potential estimates
vary: 50-500 EJ (in 2050)

III

e “Technical Potentia
750-1500 EJ per year

e 300-500 EJ of
“sustainable biomass”
in 2050

— Dornburg et al. 2010 (Energy & Env Science

e “..impossible that bioenergy could physically
provide more than 250 EJ yr-1 in 2050”

— Haberl et al. 2013 (Environ. Res. Lett. 8)
— Land assumptions limit estimate

\
Slide from Kline presentation to “Pathways to Climate Solutions: Assessing Energy Technology and Policy _ :5 \\

Innovation” Workshop organized by the Aspen Global Change Institute; 24-28 February, 2014. Aspen CO. \ : \ \?“\
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IPCC Special Report Renewable Energy
“most likely range is 80-190 EJ”
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Figure 2.25 | On the left-hand side, the lines represent the 2008 global primary energy supply from biomass, the primary energy supply, and the equivalent energy of
the world's total harvest for food, fodder and fibre in 2000. A summary of major global 2050 projections of primary energy supply from biomass is shown from left to right:

-IPCC 2012 Special Report on Renewables

and Climate Change Mitigation



IPCC Special Report Renewable Energy

Bioenergy

Primary Energy Supply [EJ/yr]
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IPCC Special Report Renewable Energy

Climate mitigation scenarios
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U.S. Bioenergy supply model

Billion Ton Update (USDOE 2011)
* Forecasts of potential biomass

— POLYSYS partial equilibrium model of
US agricultural and forestry sectors.

— 20-year projections of economic
availability of biomass (price, location,

scenario)
* Forest resources » Agricultural resources
— Logging residues — Crop residues
— Forest thinnings (fuel treatments) — Grains to biofuels
— Conventional wood — Perennial grasses
— Fuelwood — Perennial woody crops
— Primary mill residues — Animal manures
— Secondary mill residues — Food/feed processing residues
— Pulping liquors — MSW and landfill gases
— Urban wood residues — Annual energy crop (added for 2011)

#’ OAK RIDGE NATIONAL LABORATORY
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Supply curve for biomass in US, 2022
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Obstacles to bioenergy include

— Food security and land concerns

— LUC-related effects on biodiversity, carbon
debt, water

— Markets: lack of security for investment,
Increased production

— Distribution of benefits and costs

— Need for integrated policy across
agriculture, forestry, waste, environment,
energy...

— Sector- and nation-specific challenges
(e.g., US “blend wall,” distribution
Infrastructure)

Source: Kline presentation to “Pathways to Climate Solutions: Assessing Energy Technology and Policy
Innovation” Workshop organized by the Aspen Global Change Institute; 24-28 February, 2014. Aspen CO.



Food security

October 2013

Should the CFS

Committee on

USA establish ceoory
mechanism to
lift ethanol
mandates to COMMITTEE ON WORLD FOOD
1]
address fogd SECURITY
price crises
In other R
n atl O nS? orte €ssion
Rome, Italy, 7-11 October 2013
DRAFT FINAL REPORT
i) Production and consumption of biofuels, amongst many other factors, influence
4 international agricultural commodity prices. The mieraction between biofuels, food
v " a2 v prices and supply responses 15 dynamic and complex, and requires a distinction
. I Nt ¢ ¢ between short-term and long-term impacts;
, »y : 8 1) In some cases, current biofuel production creates competition between biofuel crops

and food crops. Sigmficant gnidance exists and 15 further needed to ensure that
biofoels policies are coherent with food secunty to nuninuze the rsks and maximze
the o mtu.mtles of bicfuels in relation to f-ﬂﬂd security. This includes, the CFS
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6 price spikes since 1970

Weighted average of 4 crops (wheat, soybeans, corn & rice) 1/

Index: January 2002 = 100
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Non-food commodity prices
have risen even more

Index: January 2002 = 100
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Primary factors affecting crop prices® (June 2010 - Jan 2012)

Index: January 2002 =100
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Food Prices versus field crop prices

Change in all-feod CPI and field crop prices, 1976 -2012

Annual percent change
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http://www.ers.usda.gov/data-products/chart-gallery/detail.aspx?chartId=41700&ref=collection&embed=True&widgetId=39734
http://www.ers.usda.gov/data-products/chart-gallery/detail.aspx?chartId=41700&ref=collection&embed=True&widgetId=39734
http://www.ers.usda.gov/data-products/chart-gallery/detail.aspx?chartId=41700&ref=collection&embed=True&widgetId=39734
http://www.ers.usda.gov/data-products/chart-gallery/detail.aspx?chartId=41700&ref=collection&embed=True&widgetId=39734
http://www.ers.usda.gov/data-products/chart-gallery/detail.aspx?chartId=41700&ref=collection&embed=True&widgetId=39734

Weather, energy and import/export policy
shifts are key factors in food price spikes

Higher Energy Prices Contribute to Higher Food and
Agricultural Commodity Prices

IMF Price Indices

==Crude oil

100

All Commodities
Food

Index 2005

Source: International Monetary Fund: International Financial Statistics
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Bioenergy assessment depends on estimated
“land-use change” (LUC) effects

Issues that influence estimated LUC:

1.

© 0NV R WN

Economic decision-making assumptions

Conceptual framework for drivers of ‘land conversion’

Land supply and management specifications

Assumed land use dynamics (ref. scenarios, baseline choices)
Modeling yield change

Issues of time, scale It depends
Fire and other disturbances

Differentiate correlation versus causation

Attribution among different drivers of change

10. Representation of bioenergy/policy in model specifications

11. Data issues related to all above, to test hypotheses
See IEA Joint Task 38-40-43 Kline presentation on LUC:

http://ieabioenergy-task38.org/workshops/campinas2

R)
on CBES website % A% '\%k‘-



http://ieabioenergy-task38.org/workshops/campinas2011
http://ieabioenergy-task38.org/workshops/campinas2011
http://ieabioenergy-task38.org/workshops/campinas2011
http://ieabioenergy-task38.org/workshops/campinas2011
http://ieabioenergy-task38.org/workshops/campinas2011

LUC estimates, compared to what?

* Land available for ag-expansion without
deforestation (previously cleared, underutilized)

= 500 million to 4 000 million ha?)
Circle size assumes 1500 >

* Global land area impacts:
[million hectares per year]

— Fire =330-430 est. 380 —

— Dev./Urban exp.!) = 1.5

— LUC bioenergy est. ¥ = 0.2
not visible

(1) Enormous range due to pasture, grassland,
marginal land estimates

y

Sources: W Kline et al. 2009; calc. by author based on FAO 2007. \}
@ Giglio et al. 2010. @ Tyner et al. 2010 (3 m ha total/14 years = 0.2/year) j \ Y
i \ \



Check assumptions about price/LUC

Figure 6
U.S. cropland used for crops and commodity prices of key crops

Real price and cropland indices

1.4
Land in acreage
12 _ reduction programs (policy funded set-asides)
1.0
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Source: USDA ERS 2011. http://www.ers.usda.gov/publications/eib89/

Contrary to
some modeling
assumptions,
in the US,
expectations of
commodity
prices and risk
affect choices
of what to
grow on
previously
defined
agricultural
landscapes,
not how much
total area is
dedicated to
agriculture



http://www.ers.usda.gov/publications/eib89/

U.S. agricultural exports nearly tripled from 2000 to 2013

U.5. agricultural exports by category
110 B Grains and feeds
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Real agricultural prices have fallen since 1900, even as world population

growth accelerated

Agricultural price index, 1977-79=100 World population, billions

o Acrcutsl prce " Consider
1oow\/\_x" . historic data

wf{ M| M . and trends
120 6

1001 s What drives
80- _ L+ destructive
B \ RN land
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Sourca: USDA, Economic Rasaarch Sarvice using Fuglis, Wang, and Ball (2012). Dapictad In

the chart Is the Grilll-Yang agricultural price index adjusted for inflation by the U.S. Gross
Domestic Product implicit price Index. The Grilli-Yang price Index is a composite of 18 crop
and livestock prices, each weighted by its share of global agricultural trade (Pfaffenzeller et

al., 2007). World population estimates are from the United Nations.
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Land sink (Pg C vy

Putting global “Land Use Fossil emissions
Change” emissions into 5ing ralp"?”y |
perspective (1960-2012)

e Over 90% of current CO2 emissions w !
from fossil fuels (GCP 2013)

e LUC emissions, uncertain, small and
shrinking

e Land management: high importance as
potential sink

Shaded areas around lines represent estimated range of

uncertainty
2 = '
; "’\“K_\NN\/\/\ .

N LA Land-Use Change h
A4

Fess el & Camenl

‘11960 1970 1880 1980 2000 2010 U' i : i : I ;
) GCP “Land-Use Change” estimate 1%0 1970 mﬂu 1990 QUQU Emo
based on emission factors
associated with global reported
-4 deforestation and fires
-6

1960 1970 1980 1990 2000 2010

Source: Le Quéré, C. et al. Nature Geosci.v2, 831-836 (2009) for sink; Global Carbon Project (2013) for LUC and fossil.




T

- Land Sink

1960 1970 1980 1990 2000 2010

Source: Global Carbon Project 2013

Opportunity:

Improve NET land
SINK via better
management.

Investments in
management
requires incentives.

Who pays?
For what services?
On whose land?



Opportunities

e More emphasis on win-win policy and
planning scenarios

e Build consensus on:

— Goals
e Criteria and indicators
e How to measure them
e Speak “common language”

— Better models of human behavior ref. LUC
e Empirical data to test hypotheses

e International collaboration to resolve
contentious issues...

Source: Adapted from Kline presentation to “Pathways to Climate Solutions: Assessing Energy Technology and
Policy Innovation” Workshop organized by the Aspen Global Change Institute; 24-28 February, 2014. Aspen CO.



Opportunity to contribute to global multi-
disciplinary collaboration

Sophie Hartfield, Global Calculator project leader
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— Global initiative modeled on national tools http://2050-calculator-tool.decc.gov.uk/

User Questions answered

. Show at a glance how pathways from other models
Environmental EA 2 4 and 6D path
NGOs and compare (e.g. , 4 an pathways).

governments

To make the case for tackling climate change by:

All users e Showing detrimental impacts

B
e |llustrating aspirational low emission pathways. -
= N i BER: | i



Opportunity to contribute to global multi-
disciplinary collaboration

* The Global Calculator models carbon and land use dynamics
for: Transport; Manufacturing; Electricity; Land, Bioenergy and
Food (“Land/Bio/Food”); and Buildings.

* Many collaborating institutions:

Imperial College leads Land/Bio/Food with University of Versailles, PIK-
Potsdam, Universities of Reading and Oxford

World Resources Institute leads Transport

ClimAct (Brussels, Belgium) - Manufacturing

Ernst & Young (Delhi, India) - Electricity

Energy Research and Development International (Beijing, China) - Buildings

Climate Media Factory at PIK-Potsdam - Visuals and online version of
Calculator... London School of Economics and Political Science (LSE) is
managing the climate science contribution.

* For more info see: http://globalcalculator.org/



http://globalcalculator.org/
http://globalcalculator.org/

Global calculator — opportunity for multi-
disciplinary collaboration

The level 1-4 range is simply a synthesis of what a wide range of credible experts believe
could be possible by 2050.

More abatement effort

Level 1: Level 4:
. Level 2: Level 3: very ..
Minimum e o\ extraordinarily
ambitious but ambitious but -
abatement ) ) ambitious and
achievable achievable
effort extreme

! !

Most experts will tend to congregate here Only a minority
of experts will

think this is

possible. An
extreme view.

A 1 \'R WA



Global calculator — opportunity

The Global Caleulator prototype 1.01b = Dashboard
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Land-Bioenergy-Food “Levers” in calculator

Calories consumed
Conversion

efficiencies
Land for food crops

Type of diet

Land for livestock
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Figure 1: Land/Bio/Food Diagram of the Global Calculator
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Global calculator — opportunity for multi-
disciplinary collaboration

You can help in the following ways:

e Send evidence on specific issues raised in the April workshops (do so by
end April/early May).

e After release in July, send the link to 5 people in your organisation.

e After release in July, develop an example pathway we can include in the
November/December version of the tool.

o After release in July, put link to tool on their web sites.

e After release in July, use and adapt the tool for your own purposes (it’s an
Open Government licence).

o After release in July, help with translation for the December re-release.

e Become a Global Calculator Ambassador... [see next slide]”

AT



Global calculator — opportunity for multi-
disciplinary collaboration
Global Calculator Ambassadors will be:

e Given access to an early release of the tool (e.g. 2-7 days
early, depending on our project timings nearer the time)

e Encouraged to present the Global Calculator at any
conferences/event, etc they attend using a standard slide
pack prepared by our team.

Would you like to join the email distribution list to be a Global
Calculator Ambassador? If so, please contact
Kerenza.McFaul@decc.gsi.gov.uk

A L R RA



Thoughts for discussion

* Many research studies and analyses
of potential begin with land. Is land
the primary constraint? No...

— Social, political, economic/market issues
— Institutions, governance... water

* Needed: Incentives for improved
soil/water (resource) management
— Increase carbon and nutrient retention
— And capacity to store carbon

* Ontheradar
— Integrated production systems (ILUP)

— Urban food-energy systems (nutrient
and energy recycling)

Source: Kline presentation to “Pathways to Climate Solutions: Assessing Energy Technology ¢
Workshop organized by the Aspen Global Change Institute; 24-28 February, 2014. Aspen CO.

a




Thank youl!

Center for BioEnergy

Sustainability

u

http://lwww.ornl.gov/sci/ees/cbes/




Win-Win Opportunities

e Precision management and nutrient recycling
[9plele) /= el| » Reduce disturbance/tillage intensity
& water e Crop mix, rotations, cover crops
e Epies @ Land restoration
e Technology (seed, microbe, equipment)

e Reduce inputs/increase yields
Increase e Open, transparent markets
Efficiency e Minimize transaction costs
e Prioritize, incentivize, measure

e Uses and markets
Diversify e Substitution options
e Bases of production

Adopt e Multi-scale
Systems e Long term and adaptive
Perspective e |Integrated land-use plans

onne IL, 13 O\

Source: Kline presentation to Coordinating Research Council CR



Research challenges for consistent
measures of LUC

e Accurate representations based on
clear definitions for variables and
conditions of concern:

— land attributes
— management practices
— baseline trends and change dynamics

* Causal analysis that can be validated at multlple
scales

* Adequate empirical data to test models and
hypotheses

* Multi-disciplinary, multi-institutional learning and
problem solving mechanisms

. /aroaches with low transaction costs and high
ue-added

Source: Kline presentation to “Pathways to Climate Solutions: Assessing Energy Technology and Policy Innovation”
Workshop organized by the Aspen Global Change Institute; 24-28 February, 2014. Aspen CO.




Example lever in DRAFT Climate Calculator

Levels 1-4 of the ‘Bioenergy yields’ lever are defined as follows (subject to the sub-levers
described above):

e Level 1 means a low. ¥e'l increase of energy production per area, 50% overall by 2050, or
approximately 1% a year. “h'; iz based on the current crop yield growth rate and includes
the use of crops with low energy v ¢, .nce (e.g., corn-based ethanol, and oilseed-rape-based
biodiesel).

e Level 2 assumes a moderate increase in yields, <)/ overall by 2050, or approximately 1.5% a
year. It represents the global trend of using more effici2 . 2rergy crops and technologies for
bioenergy. It also requires better farm management ana ..>austrial integration with the
production systems.

e Level 3 considers a high yield increase, 120% overall by 2050, or about 2.’ a year by 2050.
This yield growth is expected through an expansion of some new biofuels technologies, e.g.,

e Level 4 represents an extreme increase of bioenergy yields, 280% overall by 2050, or 3.5% a
year. This is based on advanced fuel technologies, biotechnology, state-of-the-art farm
management, and further use of irrigation and fertilisers. This level assumes highly efficient
energy crops (e.g., sugarcane, oil palm, switchgrass), would dominate the market and
consequently also increase the average yield of bioenergy crops. \

____ i)
AT



Example lever in DRAFT Climate Calculator

Levels 1-4 of the ‘Crop yields’ lever are defined as follows:

Level 1 represen. 2 low productivity increase, 20% overall by 2050, or approximately 0.5% a
year. This is much 1¢ /. than the world yield growth presented in the past decades and may
include some potential negu’vrrimpacts of climate change on agriculture or availability of
natural resources, e.g. water and ferd... ¢

Level 2 assumes a moderate yield growth, 5¢2, = erall by 2050, or approximately 1.0% a year,
which is a similar to FAO forecasts. It presumes that he surrent growth rates of productivity
would be slightly reduced by 2050.

Level 3 represents that the global yield growth would increase 80% !/ 2350, or approximately
1.5% a year. This increase would be slightly higher than a linear trend 7.</» the past two
decades. This level assumes a significant contribution from biotechnology, better farm
management and technology transfer in order to reduce the yield gap, as well as capacity
development programmes, and low climate change impacts on agriculture.

Level 4 presents extreme yield growth, 120% by 2050, or approximately 2.0% a year. This

Finally, the global calculator is a work in process and, therefore, the methodology here

discussed and the calibration of all lever’s levels are subject to further updates and improvements, ‘1 E
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How to effectively involve society?

« Stakeholder engagement in process: define problem, goals and
priorities, assess options, and validate proposed solutions

— How does society define the problem?

— What are priority objectives?
* Define spatial and temporal scales
 Consider constraints and opportunities

— Apply tools to obtain range of solutions

— Analyze trade-offs and complementarities

— Extract general rules, guidance for decision
makers

— Monitor to guide further improvements
over time

« Use of indicators to measure change

Source: Kline presentation to Vital Signs Trade-Offs Workshop, Oxford, UK, 6 Feb. 2014



Recommendation International Committee Food Security

20. Governments and other appropriate stakeholders are encouraged to review biofiels policies -
where applicable and if necessary - according to balanced science-based assessments of the
opportumties and rnisks they may present for food secunty, and so that bicfuels can be produced
according to the three pillars of snstainable development.

« McPhail et al. (2012) noted that speculation and oil price spikes are both important in the short run
while in the long run petroleum price grows in importance and the role of speculation diminishes
(see Table). However, in all time periods, speculation and other factors analyzed are more
important in affecting corn prices than ethanol demand for biofuel, often by an order of

magnitude or more.
Table 1. Percent Contribution of Each Shock to the Variability in Real Corn Prices

Global Demand Crude Oil Ethanol Demand Corn Speculation Corn Market

Months Shocks Price Shocks Shocks Demand Shocks Shocks
1 1.18 9.48 3.02 13.56 72.76

6 16.81 10.54 1.08 6.43 65.14

12 13.05 17.97 0.92 3.74 64.33
24 744 26.42 0.76 2.08 63.31
36 5.14 30.27 0.69 1.43 62.47
48 3.95 32.34 0.66 1.09 61.97
60 322 33.60 0.64 0.88 61.66

 Note to Table 1: McPhail et al. tried to identify the share attributable to four specific types of “shock:”
in global demand, crude oil price, ethanol demand, and corn speculation. “Corn market shocks”
represented everything else not studied explicitly (weather, policies, exchange rates, etc.).

Source: Kline comments to FAO on draft report for contingency plans for “food price crises”
April 18, 2014
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