

Abstract

Soil organic carbon (SOC) is often seen as the most important indicator of soil productivity and is therefore a key aspect of sustainability for agricultural production systems. Additionally, the potential influence of soil carbon cycling on greenhouse gas emissions (GHG) is a major concern for climate change. Since the widespread use of bioenergy is seen as a possible strategy to mitigate global climate change, carbon (C) sequestration is also a concern for this industry. If a gain in SOC is found, life-cycle assessments (LCA) of bioenergy production systems can indicate enhanced GHG savings (i.e. "negative emissions") as compared to a reference energy system. However, sampling protocols for measuring SOC are varied and can have significant effects on the calculation of this environmental sustainability indicator. The objective of this literature review was therefore to identify SOC sampling methodologies used in Brazil and the US and to define differences that could result in varying SOC estimates. These results can be used in efforts to define common sampling protocols for the assessment of key aspects of sustainability for bioenergy. We have started with Brazil and the US, the two largest producers and exporters of ethanol in the world, and have focused on corn and sugarcane production. Results indicate the following: (i) sampling the top soil profile to 30 cm may yield inaccurate estimates; (ii) within the conterminous United States, studies that measured for SOC in bioenergy croplands collected the soil samples by using the core method and conversely, much of the studies in Brazil use excavated pits; (iii) pre-treatment samples to establish a baseline are not often taken and can provide a better understanding of soil carbon sequestration under different management practices; (iv) there is a wide variability in the sample sizes and research design (e.g., random, systematic or stratified) for SOC measurements, even within the same crop and region. Therefore, care must be taken when making comparisons between these studies.

Climate Change Science Institute

Central Question

How can measurement protocols affect the calculation of soil organic carbon and what would the influence on baseline and targets be?

Impact

The USA and Brazil are the two largest producers and exporters of ethanol in the world. One key issue affecting the sustainability of bioenergy production that requires joint-research is the formation of common methodology to measure key indicators of bioenergy sustainability. Consistent and comparable indicators, with standardized measurement protocols, will facilitate international trade, comparisons of energy options and allow compilation of better baselines, targets, and best available practices. Bioenergy and climate change are global challenges that can only be effectively addressed through international cooperation.

http://www.biochar.org/joomla/index.php?option=com content&task=view&id=67 &Itemid=7&limit=1&limitstart=4

http://pendleton.ca.uky.edu/sites/pendleton.ca.uky.edu/files/Soil Sampling.jpg

Measuring SOC in USA and Brazil: Varying methods and implications Dana Abulebdeh, mentored by Keith Kline and Maggie Davis

Table 1. Summary of studies measuring for SOC in bioenergy crops in the USA								
Reference	Latitude	Crop ^a	Soil Series ^b	Depth (cm)	Samples Collected	Sample		
Gál et al. (2007), S&TR 96: 42-51	40° 28'N	C-S	Chalmers SiCL	100	Cores	Systema		
Follett et al. (2013), SSAJ 77: 951-963	40° 39'N	С	Fort Collins CL	120	Cores	GPS		
Follett et al. (2012), BioR 5: 866-875	41 [°] 46'N	C/SG	Yutan SiCL	150	Cores	Systema		
Karlen et al. (2013), S&TR 130: 24-41	42 ⁰ 01'N	C-S	Clarion L	15	Cores	Systema		
Bolinder et al. (1999), P&S 215: 85-91	45 ⁰ N	С	Neubois SiL	30	Cores	Random		
Clapp et al. (2000), S&TR 55: 127-142	44 ⁰ 44'N	С	Waukegan SiL	30	Cores	Random		
Wilts et al. (2004), SSAJ 68: 1342-1351	45° 36'N	C/W/O	Hamerly CL	45	Cores	Random		
Duiker and Lal (1999), S&TR 52: 73-81	40 [°] 00'N	C/W	Crosby SiL	30	Cores	Systema		
Franzluebbers et al. (2012), JSWC 67: 178-182	33 ⁰ 62'N	C/S/W	Cecil SaCL	150	Cores	Random		
Halvorson et al. (2002), AJ 94: 1429-1436	31 [°] 33'N	C/W	Weld SiL	15.2	Cores	Random		
Hooker et al. (2005), SSAK 69: 188-196	41 ⁰ N	C/W/B		15	Cores	Systema		
Motta et al. (2000), JSWC 65: 6-13	31 [°] 31'N	C/S/Co/So	Lucedale CL	30	Cores	Random		
Olson et al. (2005), S&TR 181: 217-225	42 [°] 42'N	C/S	Luvisol Si	75	Cores	Systema		
Al-Kaisa et al. (2005), ASE 30: 174-191	41 [°] 52'N	C-S	Canisteo SiL	15	Cores	Random		
Varvel and Wilhelm (2010), SSAJ 74: 915-921	40 ⁰ 48'N	C/C-S/S-C	Sharpsburg SiCL	30	Cores	Random		
Aziz et al. (2013), S&TR 131: 28-35	39 ⁰ 30'N	C/C-S/W	SaSiC	30	Cores	Random		
Evers et al. (2013), AJ 105: 1271-1276	39 ⁰ 11'N	C/S/SG	Kahola SiL	15	Cores	Random		
Lee et al. (2007), AJ 99: 462-468	44 ⁰ 10'N	SG	Egan SiCL	90	Cores	Random		
Yang and Wander (1998), S&TR 49: 179-183	40 ⁰ 06'N	C/S	Thorp SiL	30	Cores	Random		
Rhoton et al. (2002), S&TR 66: 1-11	34 [°] 37'N	C/Co	Grenada SiL	15.2	Cores	Random		
Sainju et al. (2008), AEE 127: 234-240	34 ⁰ 41'N	Co/C/R	Decatur SiL	20	Cores	Systema		
Ramirez et al. (2007), S&TR 43: 131-167	40° 29'N	C/C-S	Drummer SiCL	100	Cores	Random		
^a Crop abbreviations: C, corn (Z. mays L.); S, soy W, wheat (Triticum ssp.).	bean (G. max L. Mei	rr); SG, switchgrass	(Panicum virgatum L	.); SO, sorgh	um (Sorghum b	oicolor (L.)		

Pits (Brazil) or Cores (USA)

Sampling method	Benefits	Drawbacks
Cores	Precise measurement	Inability to sample below rocks
	Able to employ large number of	larger than the corer
	samples	Includes rocks in sample
	Whole field assessment	Grinding of rock
	Detect significant change	Compression/compaction
	Flexible	
	Less labor intensive	
	Portable/weighs less	
	Little surface disturbance	
	Faster in time	
Pits	Accurate measurement	Labor intensive
	Direct measurement of soil mass	Time consuming
	Accurate assessment of bulk	Destructive
	density and coarse fraction	Precludes use in small plots
	Avoid rocks	Fewer observations
	Recognition of soil horizon	No repeated sampling
	Large volume of soil samples	
	Undisturbed and disturbed soils	

(A) No pre-treatment sample (i.e. to establish a baseline) are taken. Measurements of SOC to determine effects of differing treatments such as no-till (NT) vs. conventional may yield higher sequestration rates for one treatment without the context of changes over time. This may lead to inaccurate estimates of carbon sequestration.

(B) Olson (2013) argues that if pre-treatment samples are taken and SOC levels are shown to have no significant differences between both field sites (converging lines), measurements after long-term treatments will show a change in both management practices but NT changes at a slower rate. Only when the carbon levels within the NT system shows an increase between the pre-treatment to the final measurement of the treatment effect (NT_1) , could it be accurately concluded that carbon was sequestered (McGuire, 2013).

Brazil studies measuring SOC

leference	Latitude	Crop ^a	Soil Series ^b	Depth (cm)	Samples Collected	Sample Design			
ousa et al. (2005), PAB 40: 271-278	21 [°] 22'S	Sc	Basaltic C	30	Pits	Random			
Razafimbelo et al. (2006), AEE 115: 285-279	21 [°] 22'S	Sc	Basaltic C	10	Pits	Systematic			
Cerri et al. (2004), AAF 62: 23-28	21º 22'S	Sc	Basaltic C	20	Pits	Systematic			
Resende et al. (2006), P&S 281: 339-351	08° 02'S	Sc	Entisol	60	Pits	Systematic			
Szacks et al. (2007), Doctoral dissertation	21 [°] 22'S	Sc		30	Pits	Systematic			
Galdos et al. (2009), Georderma 153: 347-352	21 [°] 22'S	Sc	Ferralsol C	100	Pits	Systematic			
Pinheiro et al. (2010) , PS 333: 71-80	19 ⁰ 18'S	Sc	Acrisol C	100	Pits				
Гivet et al. (2013), Georderma 210: 214-225	25° 09'S	Sc	Oxisol C	100	Pits	Random			
Macedo et al. (2008), FE&M 225: 1516-1524	23 ⁰ 02'S	Sc	Ferralsol C	60	Pits	Random			
Rossi et al. (2013), AE&E 170: 36-44	17 [°] 47' S	Sc	Oxisol SaL	60	Pits	Systematic			
Carvalho et al. (2009), S&TR 103: 342-349		Sc		30	Pits	Random			
Calegari et al. (2008), SQ&F 100: 1031-1019	26 [°] 07'S	C/S	Oxisol C	60	Pits	Systematic			

Long-term studies

^b Texture abbreviation: C, clay; L, loam; Sa, sand, Si, silt.

Conclusions

The majority of the studies included in this literature review varied in depth, sample sizes, and design, thereby making it difficult to compare how these could influence SOC results. Therefore, more research is needed before comparisons are made between energy options based on these widely varying studies.

Information on long-term management is crucial in order to explain patters in SOC changes, but long-term studies are costly and are often difficult to keep going with unpredictable research funding. Additionally, long-term experiments are rarely replicated, which hinders validation of SOC models. Studies have shown that when baseline measurements are included, conclusions can be significantly different from studies without these measurements. Additionally, making comparisons between samples taken in one season of one year with samples taken several later years and in a different seasons is unlikely to provide reliable estimates of difference in SOC sequestration rates.

Continual Improvements

SOC is dynamic and it varies spatially and temporally throughout the terrestrial biome. This allows for a continual improvement process, as an ongoing effort to improve the soil quality with management practice, land-use, residue remnants, and a common set of protocols that best assess the capture of carbon into the soil. These efforts can provide incremental improvement over time or a great developmental improvement all at once. However, contributions are needed from soil scientists, land managers, and farmers to build a robust foundation for soil sampling protocols. The following research needs have been identified:

- > Replicated studies in different regions, soil types, and management practices in order to clarify management and environmental interactions on C sequestration and GHG emissions.
- > Field studies comparing short-term and long-term frequency to understand when carbon is changing in that area.
- Research to determine if measurements taken deeper than 1m will provide a better understanding of the influence that depth has on SOC and resolve which type of management practices are likely to have impacts deeper in the soil profile.
- > All studies should explicitly include clear and transparent methodology (i.e. all steps used for sampling or a reference to a established protocol) in order for future researchers to be able to make comparisons.
- Additionally, investments should be made in long-term field experiments to determine real changes in SOC over time.
- Using the results of these long-term studies, SOC models should be validated to provide greater confidence in estimates.
- To obtain complimentary results (similar to Karlen et al., 2013), additional studies are needed to measure soil organic carbon on cornsoybean rotation compared to other crop rotations including corn.

Acknowledgements

Thank you all for the experience and knowledge that I gained during my research internship at the Oak Ridge National Laboratory, in the Center for Bioenergy Sustainability and the Climate Change Science Institute. A special thanks to Keith Kline and Maggie Davis, mentors for my appointment under the Higher Education Research Experience program with the Oak Ridge Institute for Science and Education.

This research was supported by the US Department of Energy (DoE) under the BioEnergy Technologies Office (BETO). The views expressed here are those of the authors, who are also responsible for any errors or omissions.

Contact: Dabulebd@uncc.edu